Main page | Journal list | Log-in

Janez Kovač, Jernej Ekar, Miha Čekada, Lenka Zajíčková, David Nečas, Lucie Blahová, Jiang Yong Wang, Miran Mozetič

Depth profiling of thin plasma-polymerized amine films using GDOES in an Ar-O2 plasma

Applied Surface Science 581 (2022) 152292

Thin polymer films were deposited on polished stainless-steel samples by PECVD from a cyclopropylamine precursor and characterized by X-ray photoelectron spectroscopy, secondary-ion mass spectrometry and glow-discharge optical emission spectroscopy (GDOES) depth profiling. These depth profiles exhibited reasonable agreement. The GDOES involved the erosion of the polymer films in plasma sustained by an asymmetric RF capacitively coupled discharge using both Ar and Ar-O2 gases. The application of pure Ar caused unwanted effects, such as the broadening of the polymer-film/substrate interface, which were suppressed when using the mixture with oxygen. Another benefit of oxygen was a significant increase in the etching rate by a factor of about 15 as compared to pure argon. The mechanisms involved in the depth profiling using the mixture of gases were elaborated in some detail, taking into account plasma parameters typical for an asymmetric, capacitively coupled RF discharge in a small volume. The main benefit of using the Ar/O2 GDOES profiling with respect to XPS and SIMS depth profiling is the increased sputtering rate for polymer films. Comparing the GDOES depth profiling with the Ar/O2 mixture with profiling in pure Ar, the benefits are a higher sputtering rate and better depth resolution at the polymer/substrate interface.

Download PDF (2265 kB)

This article may also be available to you online

DOI: 10.1016/j.apsusc.2021.152292

You can also contact one of the authors: lenkaz@physics.muni.cz, yeti@physics.muni.cz, lucie.blahova@ceitec.vutbr.cz