Thomas Siefke, Stefanie Kroker, Kristin Pfeiffer, Oliver Puffky, Kay Dietrich, Daniel Franta, Ivan Ohlídal, Adriana Szeghalmi, Ernst-Bernhard Kley, Andreas Tünnermann
Materials Pushing the Application Limits of Wire Grid Polarizers further into the Deep Ultraviolet Spectral Range
Advanced Optical Materials 4 (2016) 1780-1786
Wire grid polarizers (WGPs), periodic nano-optical metasurfaces, are convenient polarizing elements for many optical applications. However, they are still inadequate in the deep ultraviolet spectral range. It is shown that to achieve high performance ultraviolet WGPs a material with large absolute value of the complex permittivity and extinction coefficient at the wavelength of interest has to be utilized. This requirement is compared to refractive index models considering intraband and interband absorption processes. It is elucidated why the extinction ratio of metallic WGPs intrinsically humble in the deep ultraviolet, whereas wide bandgap semiconductors are superior material candidates in this spectral range. To demonstrate this, the design, fabrication, and optical characterization of a titanium dioxide WGP are presented. At a wavelength of 193 nm an unprecedented extinction ratio of 384 and a transmittance of 10% is achieved.
You can also contact one of the authors: franta@physics.muni.cz, ohlidal@physics.muni.cz